
A Program Certification Assistant Based on
Fully Automated Theorem Provers

Ewen Denney and Bernd Fischer

USRA/RIACS, NASA Ames Research Center
Moffett Field, CA 94035, USA

{edenney,fisch}@email.arc.nasa.gov

Abstract

We describe a certification assistant to support formal safety proofs for programs.
It is based on a graphical user interface that hides the low-level details of first-order
automated theorem provers while supporting limited interactivity: it allows users
to customize and control the proof process on a high level, manages the auxiliary
artifacts produced during this process, and provides traceability between the proof
obligations and the relevant parts of the program. The certification assistant is part
of a larger program synthesis system and is intended to support the deployment of
automatically generated code in safety-critical applications.

1 Introduction

Program verification remains one of the most promising applications of theo-
rem proving, and both fully automatic and interactive provers have been used
in verification projects. However, program verification has not lived up to its
early promises and is not yet applied routinely in software development. This
has a variety of reasons, ranging from the technical difficulties the task still
poses for theorem provers, to problems in designing appropriate interfaces, and
the cultural changes that are necessary in the software development process
itself.

In this paper, we describe a user interface we have developed for the appli-
cation of fully automatic first-order theorem provers (ATPs) in formal program
certification. Here we employ a limited and thus more tractable variant of full
program verification that uses the same basic technology but is concerned
only with safety-relevant aspects of a software system rather than the com-
plete system behavior. Formal program certification is based on the idea that
mathematical proofs of the individual safety properties can be regarded as
certificates which can be subjected to external scrutiny and related to the

Preprint submitted to Elsevier Preprint 16 May 2005



relevant safety-critical parts of the software system. This particular purpose
of the proofs requires a dedicated application-oriented interface rather than
a proof-oriented interface—in effect, we need a certification assistant rather
than a proof assistant.

The role as certification assistant puts the user interface under the influence
of two competing design principles. On the one hand, it has to “hide” the
theorem provers from unsuspecting software engineers. On the other, it has to
be open in order to provide coarse-grained control of the certification process,
to maintain traceability between the different artifacts (especially source code
and verification conditions), and to ensure trust in the entire certification
process. As a consequence of this duality, the interface cannot completely
separate the ATP from the rest of the certification environment.

Our work on certification emerged from an ongoing project on automated

program synthesis. We have developed two synthesis systems for the domains
of scientific data analysis [12] and state estimation [36], which can generate
code for safety-critical application areas like spacecraft guidance, navigation,
and control. Process standards such as DO-178B [23], however, require that
all safety-critical software be certified to a high degree of confidence. Our
goal is thus to integrate our synthesis tools with a dedicated certification
environment so that end-users can trust the generated code more easily. We
adopt a browser paradigm so that users can inspect the code and interact with
the underlying prover, while being shielded from the low-level minutiae. We
believe that our work, while still in progress, offers potential for increasing
acceptance of code generators in safety-critical domains at NASA.

In Section 2, we introduce our automated synthesis and verification sys-
tems, as well as the underlying theorem provers, and describe the certification
problem we address. The system architecture has a direct bearing on the cer-
tification interface, which is described in Section 3. Although the system is
fully automatic, users have the option of controlling the proof process by se-
lecting and parameterizing different provers, and inspecting the logs of prover
sessions, including the proofs themselves. This is described in Sections 3.1
and 3.2, respectively. In Section 3.3, we describe the verification condition
browser, which is used to relate proof obligations to the synthesized code.
Section 4 describes the user model our system is aimed at. Section 5 describes
related work on interfaces for prover-based verification, and Section 6 outlines
our future plans.

2 Background and System Architecture

Figure 1 shows the overall architecture of our extended program synthesis
system, which comprises three classes of components: the original synthesis
system, the certification extensions, and corresponding document generation

2



simplifier

theory

domain

ATP
checker

proof

trusted

untrusted

safety

policy

system

synthesis

documentation

certification &

spec.

problem

documents

certificates

VCG
VCs

axioms / lemmas

proofs

proofs

SVCs proofs

rewrite rules

extended synthesis system

annotated code

browser

code

renderer

Fig. 1. Certifiable program synthesis: System architecture

extensions. We describe these components in more detail in the following
sections.

2.1 Program Synthesis

Traditionally, program synthesis has followed the proofs-as-programs paradigm:
the problem is specified as a conjecture in a suitable logic, an interactive the-
orem prover like Coq, Isabelle, or NuPRL is used to construct a proof, and
a functional program is extracted from that proof and then translated into
the target environment. However, this traditional, purely deductive approach
to program synthesis is notoriously difficult to scale up to large problems (cf.
[3]) and full automation has remained elusive. We thus follow a schema-based

synthesis approach that combines deductive reasoning with techniques from
generative programming. Most of the components described in this section
are hidden inside the synthesis system box in Figure 1.

Problem Specifications. Schema-based synthesis does not necessar-
ily require a logical conjecture as starting point for a proof. Code deriva-
tion, therefore, can begin with a specification in a more application-oriented
domain-specific language. Our specification languages combine some target
language constructs (e.g., declarations) with established scientific and engi-
neering notations (e.g., differential equations). This allows a concise and fully
declarative formulation of the problem together with some details of the de-
sired configuration and architecture of the code to be generated.

Schemas. A schema is a parameterized code fragment (i.e., template)
together with a set of constraints that determine whether the schema is ap-
plicable and how the parameters can be instantiated. The constraints are
formulated as conditions on a problem model, which allows the problem struc-
ture to directly guide the application of the schemas and thus constrains the
search space. The parameters are instantiated by the synthesis engine, either

3



directly on schema application or by recursive calls with a modified problem.
The schemas are organized hierarchically into a schema library which further
constrains the search space. Schemas represent both fundamental building
blocks (i.e., algorithms) and solution methods (i.e., transformations) of the
domain; they are thus similar to the lemmas used in interactive systems but
they can contain explicit calls to a meta-programming kernel in order to con-
struct the code fragments.

Symbolic Computations. Symbolic computations are used to support
schema instantiation and code optimization. The core of the symbolic sub-
system is a small rewrite engine which supports associative-commutative op-
erators and explicit contexts. It thus allows contextual rules as for example
x/x →C `x6=0 1 where →C `x6=0 means “rewrites to, provided x 6= 0 can be
proven from the current context C.” Expression simplification and symbolic
differentiation, similar to those in Mathematica, are implemented on top of
the rewrite engine. The basic rules are straightforward; however, vectors and
matrices require careful formalizations, and some rules also require explicit
meta-programming, e.g., when bound variables are involved.

Intermediate Code. The code fragments in the schemas are formulated
in an imperative intermediate language. This is essentially a “sanitized” vari-
ant of C (i.e., no pointers, no side effects in expressions etc.); however, it also
contains a number of domain-specific constructs like vector/matrix operations,
finite sums, and convergence-loops.

Optimization. Straightforward schema instantiation and composition
produces suboptimal code; worse, many of the suboptimalities cannot be re-
moved completely using a separate, after-the-fact optimization phase. Schemas
can thus explicitly trigger large-scale optimizations which take into account
information from the synthesis process. For example, all numeric routines
restructure the goal expression using code motion, common sub-expression
elimination, and memoization; since the schemas know the goal variables, no
dataflow analysis is required to identify invariant sub-expressions, and code
can be moved around aggressively, even across procedure borders.

Code Generation. In a final step, the optimized intermediate code is
translated into code tailored for a specific run-time environment. We currently
have code generators for the Octave and Matlab environments, and can also
produce standalone Ada, C, and Modula-2 code. Each code generator employs
one rewrite system to eliminate the constructs of the intermediate language
which are not supported by the target environment (“desugaring”) and a
second rewrite system to clean up the desugared code; most rules are shared
between the different code generators.

AUTOBAYES and AUTOFILTER. So far we have built two domain-
specific synthesis systems following the schema-based approach outlined above.
AutoBayes [12] works in the scientific data analysis domain and generates

4



parameter learning programs, while AutoFilter [36] generates state estima-
tion code based on variants of the Kalman filter algorithm. Both systems share
a large common core (e.g., symbolic subsystem, certification subsystem, and
code generators) but have their individual schema libraries. They are imple-
mented in SWI-Prolog and together comprise approximately 100 kLoC. Both
systems work fully automatically and can generate code of considerable size
and complexity (approximately 1500 LoC with deeply nested loops) within a
few seconds.

2.2 Certification

Unlike purely deductive approaches, schema-based synthesis cannot ensure
correctness by construction. Since formally verifying the entire system is infea-
sible, we instead validate each generated program individually; furthermore,
we concentrate on specific aspects of program safety (e.g., memory safety).
The core idea is that the schemas can be extended to simultaneously generate
code and all required annotations such that a verification condition generator
can produce proof obligations which are then discharged using an automated
theorem prover. The resulting proofs, which can be validated by an automated
proof checker or prepared for human inspection, then serve as certificates. The
synthesis system can generate the appropriate annotations because it has full
knowledge about the form the generated code will take and the specific safety
aspect that is to be certified. However, our certification approach is not nec-
essarily tied to synthesis and the annotations could in principle also be added
to code that has been implemented manually.

Safety Policies. A safety policy is a set of Hoare-style proof rules and
auxiliary definitions which are designed to show that “a program does not go
wrong,” i.e., satisfies the safety property of interest [6,35]. Safety policies can
be used to enforce both language-specific properties which can be expressed
in terms of the constructs of the underlying programming language itself, and
are thus sensible for any program in the language, as well as domain-specific

properties, which typically relate to high-level concepts outside the language
(e.g., matrix multiplication).

We currently support five different safety policies. Array-bounds safety
requires each access to an array element to be within the declared bounds
of the array. Variable initialization-before-use ensures that each variable or
individual array element has been assigned a defined value before it is used.
Both are typical examples of language-specific properties. For the data analy-
sis domain, we can guarantee vector-norm safety (i.e., probability vectors add
up to one). For the state estimation domain we can check proper sensor input
usage (i.e., all input variables are used in the computation of the filter output)
and matrix symmetry (i.e., covariance matrices are not skewed).

Annotated Code. The annotations are part of the schemas and thus are

5



instantiated in parallel with the code fragments; further annotations are intro-
duced by the desugaring steps of the code generation phase. The annotations
contain local information in the form of logical pre- and post-conditions and
loop invariants, which is then propagated through the code.

VCG. The fully annotated code is then processed by a weakest precondi-
tion verification condition generator (VCG), which applies the Hoare-rules of
the safety policy in order to generate verification conditions (VCs). The VCG
has been designed to be “correct-by-inspection”, i.e., to be sufficiently simple
that it is straightforward to see that it correctly implements the rules of the
logic. Hence, it does not implement any optimizations, such as structure shar-
ing on the VCs or even apply any simplifications. As usual, the VCG works
backwards through the code and verification conditions are generated at each
line that can potentially violate the safety policy.

Simplification. By design of the VCG, the generated VCs are quite
complex; hence, they need to be simplified before they can be discharged
by an ATP. The certification extension thus re-uses the rewrite engine of the
synthesizer together with a dedicated set of rewrite rules. Details can be found
in [7].

ATP. For our purposes, an ATP is a search procedure which applies the
inference rules of its calculus until it either finds a proof or fails because none
of the rules are applicable. In order to handle extra-logical operations (as, for
example, arithmetic functions), the ATP needs an additional domain theory

that specifies their intended meaning as axioms. The provers use a set of core
axioms, together with a collection of dynamically generated axioms, depending
on the particular proof task.

Proof Checking. As an alternative to formally verifying the ATPs, they
can be extended to generate sufficiently detailed proofs which can then be
independently checked by a small, verifiable algorithm. However, due to the
lack of a standardized format and various other reasons [8], there are almost
no proof checkers for high-performance ATPs, in contrast to the situation
for tactic-based higher-order provers. We have linked our system to the only
exceptions we are aware of: the Ivy system [17], which is based on Otter, and
the GDV verifier [27].

Trusted Components. Similarly to proof carrying code [20], we dis-
tinguish between trusted and untrusted components, shown in Figure 1 in
red (dark grey) and blue (light grey), respectively. Components are called
trusted—and must thus be correct—if any errors in them can compromise the
assurance provided by the overall system. Untrusted components, on the other
hand, are not crucial to the assurance because their results are double-checked
by at least one trusted component. In particular, the correctness of the overall
system does not depend on the correctness of its two largest components: the
synthesizer, and the theorem prover; instead, we need only trust the safety

6



policy, the VCG, the domain theory, and the proof checker.

2.3 Theorem Proving

We have deliberately limited our attention to fully automated theorem provers
for first-order logic. This is primarily motivated by our user model which as-
sumes no expertise in theorem proving (cf. Section 4) and thus mandates a fully
automated proof process. While tactic-based provers can also provide some
degree of automation (e.g., Coq’s Auto, PVS’s grind, or Isabelle’s Blast tac),
their automatic modes are too weak for the emerging proof tasks and their
interactive modes are incompatible with our current framework. An escape
from failed proof tasks directly into the prover would need to be carefully
integrated into the interface, and would only be useful for theorem proving
experts, who are not our intended user class.

Moreover, first-order logic suffices for the formulation of safety policies, so
using higher-order logic or constructive type theory would (from some per-
spectives) be introducing an unnecessary complication.

Finally, first-order ATPs benefit from a standardized syntax for proof tasks
and an associated tool suite that provides translations into different input
formats, preprocessing steps like clausification, and prover control. Although
it would probably not be too hard to convert our output into the various tactic-
based prover formats, we believe this is best left to a more general approach,
perhaps by leveraging work done on Proof General [2].

2.4 Document Generation

The basic idea behind our certification approach can also be extended to
human-readable documentation. The schemas contain text templates that
are instantiated and composed together with the code fragments; this auto-
generated text explains the relevant parts of the algorithm, give detailed
derivations of mathematical formulas, and relate program constructs and vari-
able names back to the specification.

We can also generate a standardized software design document that con-
tains interface descriptions, administrative information (names of files, ver-
sions, etc.), specific input and output constraints, and synthesis and compiler
warnings. The document is hyperlinked to the input specification, the code,
and any other intermediate artifacts generated during synthesis. Since the de-
sign document is generated at synthesis time, it can refer back to the original
specification and also include design details which would be difficult, if not
impossible, to infer from the generated code alone.

The actual documents are generated from the commented code and the
auxiliary files by different renderers that are specific for the targeted output
formats. This also allows an easy customization of the document styles.

7



Fig. 2. Certification assistant: start-up view

3 The Certification Assistant

The certification assistant serves three main purposes. First, it allows users
to customize and control the proof process on a high level. Second, it man-
ages the auxiliary artifacts produced by this process, such as the dynamically
generated axioms or clausified formulas generated by the ATPs. Third, it
provides traceability between the VCs and the relevant parts of the program.

The interface mainly uses straightforward HTML as underlying technol-
ogy. This is augmented with some scripting code to support the VC-browsing
described in Section 3.3. The certification assistant consists of a few support-
ing shell scripts to control the provers, some boilerplate CGI and HTML code
and a number of PHP files that are auto-generated together with the target
code; in total, this amounts to approximately 2000 lines. The generation of the
PHP files and the customization of the certification assistant itself is triggered
by a simple command line option of the synthesis system.

Figure 2 shows the startup view of the certification assistant, after the
code and supporting files have been generated. The window is split into three
different areas. The left half contains a hyperlinked version of the generated
code; the line numbers are used as labels by the VC linker. The right half
contains a simple prover control panel and the list of verification conditions
below that. Initially, no information is available about the proof status of any
of the verification conditions.

8



Fig. 3. Certification assistant: updated view with prover results

3.1 Prover Control

In contrast to interactive proof systems like Coq, Isabelle, or NuPRL, the user
interaction here is only concerned with the parameterization of the proof pro-
cess, but not with the application of individual tactics, and the prover control
panel reflects this restricted interaction style. Different drop-down menus al-
low the user to select the theorem prover, choose between various predefined
axiomatizations of the domain theory that are to be used for the proof at-
tempts, and to select the level of evidence (i.e., proof status, prover logs, or
full proofs) that the prover is required to supply. In addition, the user can
specify the time limit for an individual task and any prover-specific parameters
that will be passed along unchecked (e.g., term orderings). The certification
process is then started by selecting any or all of the verification conditions
from the list and sending the request, which the certification assistant passes
to the selected prover.

Figure 3 shows the startup view updated with the prover results. For each
verification condition, a link to its location in the source code (cf. Section 3.3)
is displayed, together with the current proof status and the elapsed proof
time. We abstract away from the varying responses produced by different
theorem provers and currently the proof status is either proven, error, or not

available (if no proof has been attempted yet). Future versions will use the
more refined TSTP ontology [29]. If evidence has been produced, the status

9



contains a link to the evidence (cf. Section 3.2). If some proof attempts fail
(e.g., the verification condition quaternion ds1 init 0034 ), the user can resend
a request with different settings or with a different ATP.

The certification assistant serves as common interface to different first-
order ATPs in a similar spirit to how Proof General [2] serves as common
interface for different interactive higher-order provers. However, due to the
limited interaction and the black-box style integration, the protocol require-
ments to link to a prover are much simpler than for Proof General. In particu-
lar, we can use the TPTP syntax [28] as common notation which is understood
by most targeted ATPs and can be easily translated for the others. Hence,
only straightforward control scripts are required for the integration; we are
currently also in the process of replacing these by the control scripts used in
the annual ATP system competition (CASC) [25]. The certification assistant
currently integrates eight different ATPs (DCTP [16], E [24], E-Setheo [19],
Gandalf [30], Ivy [17], Otter [18], Spass [34], and Vampire [22]), most of them
in different versions, that run on the local server. In addition, it also provides
a remote link to the SystemOnTPTP proof server at the University of Miami
[26], which acts as a trusted prover component repository. The integration
is simplified by the fact that SystemOnTPTP is also based on the TPTP
tool suite and thus returns results in the same output format as the local
installations of the ATP.

3.2 Certificate Inspection and Visualization

The certification assistant also provides access to the auxiliary artifacts that
are produced during the certification. This includes the intermediate stages
in the processing chain (generated axioms, clausal normal form etc.), prover
log files, and actual proofs, depending on the required level of evidence. These
artifacts can support, or in the absence of a proof collectively serve as, the
certificate, and can be inspected as raw text files, or using third-party tools,
e.g., the GDV derivation verifier [27] and the proof visualizer from the TPTP
tool suite [28].

3.3 VC Linker and Browser

A VC can fail to be proven for a number of reasons. First, there may of course
be an actual safety violation in the code. Second, the (generated) annotations
may be insufficient or wrong. Annotation errors can come from any part
of the schema, or from the propagation phase: an annotation might not be
propagated far enough, or it might be propagated out of scope. Third, the
theorem prover may time-out, either due to the size and complexity of the VC,
or due to an incomplete domain theory. For certification purposes, however,
it is important to distinguish between unsafe programs and any other reasons

10



for failure, and in the case of genuine safety violations, to locate the unsafe
parts of the program.

However, manually tracing the VCs back to their source is quite difficult
as the verification process is inherently complex. The VCs can become very
large and go through substantial structural simplifications, after which they
are typically [7] of the form hyp

1
∧ · · · ∧ hypn ⇒ conc. Here, a hypothesis,

hyp, stems either from a loop invariant, an index bound, or a propagated
annotation, and the conclusion, conc, is either derived from an annotated
assertion or from a generated safety condition, any of which can be substituted
into. Hence, a single VC can depend on a variety of information distributed
throughout the program.

In order to support tracing between the VCs and the source code, the VCG
adds the appropriate location information to the formulas it constructs as it
processes a statement at a given source code location. We currently use simple
line numbers as locations rather than individual subterm positions [14].

The source locations need to be threaded through all stages of our certi-
fication architecture (cf. Figure 1), and, in particular, through the simplifier.
We have thus extended the rewrite rules used for simplification to preserve the
associated labels through the rewrite process, similar to the labeled rewrite
rules used in the Simplify prover [10]. This approach requires careful “rule
engineering” to maintain the relevant location information while minimizing
the scope of the labels and thus preventing the introduction of too much noise
into the linking process. However, since each VC is generally linked to mul-
tiple statements, the location information for the entire program needs to be
maintained, even if we just want to know whether a single line in the code
satisfies a given safety property.

Figure 4 shows how the tracing information can be used to support the
certification process. A click on the source link associated with each verifica-
tion condition prompts the certification assistant to highlight in boldface all
affected lines of the code. A further click on the verification condition link
itself displays the formula, which can then be interpreted in the context of
the relevant program fragments. This helps domain experts assess whether
the safety policy is actually violated, which parts of the program are affected,
and eventually how the violation can be resolved. This traceability is also
mandated by relevant standards such as DO-178B [23].

In practice, safety checks are often carried out during code reviews [21],
where reviewers look in detail at each line of the code and check the individual
safety properties statement by statement. To support this, linking works in
both directions: clicking on a statement or annotation displays all VCs to
which it contributes (i.e., which are labeled with its line number). Figure 5
shows the result of clicking on the label for line 220; the unproven verification
condition indicates that this line of code has not been completely cleared yet.

11



Fig. 4. Certification assistant: linking from VC

Fig. 5. Certification assistant: linking from code

12



4 User Model

Our system is primarily targeted towards end-user domain experts, whose
knowledge is in the application domain (i.e., data analysis or state estima-
tion). It is expected that they develop the specifications or algorithm schemas
(cf. Section 2.1, but not discussed further in this paper) but not the certifica-
tion machinery. Their goals are automatically certifying the code, gaining in-
cremental assurance through redundant checks, and supporting code reviews.
We assume general familiarity with the synthesis and certification process, in
particular with the principle that annotated code generates a number of veri-
fication conditions for a given safety policy, on a line by line basis. However,
we do not assume any familiarity with the logical process by which the obli-
gations are obtained or subsequently discharged. Hence, we support a black
box use of ATPs to discharge the VCs. The ability to vary the prover and to
invoke an external authority both increase the level of assurance. The ability
to trace in both directions between code and VC is essential to support code
reviews.

A secondary user class is the system developers. Their main aim is debug-
ging various components of the underlying synthesis systems, in particular
the generated code and annotations, the safety policies, the provers and do-
main theories (including the dynamically generated axioms), and their instal-
lation (including the scripts). Hence, being able to vary as many components
and parameters as possible, and inspecting evidence is important in isolating
bugs and debugging prover scripts and installations. Likewise, tracing VCs to
source code locations is essential for debugging the generated code and the an-
notations, as errors in the synthesizer can manifest themselves in unprovable
VCs.

5 Related work

There are a number of program verification systems which use theorem prov-
ing, both automated and interactive, as the underlying technology. However,
the provers are hidden to varying degrees. Fully automated provers are typ-
ically used as black-box components in a tool chain that controls the verifi-
cation process and determines the form of the interface. Often, the interfaces
follow a compiler style, with command line parameters as inputs and error
messages as outputs (e.g., ESC/Java [13,10]), although an integration with a
graphical software development environment is also possible [1]. Interactive
systems, on the other hand, typically use expressive higher-order logics to
model the entire software process within the system, relying on the built-in
prover interface to directly control and interpret the verification process.

Perfect Developer [5] is a combined software development and verifica-

13



tion environment. The user writes annotated programs in an intermediate
language, where the annotations express a correctness specification in the
design-by-contract methodology. The programs can then be translated into a
variety of target languages, or analyzed using Hoare logic and an automated
theorem prover.

Caveat [4] offers similar analysis capabilities, although it operates directly
on source code (as opposed to an intermediate language), with the advantage
that bugs can then be located directly. The tool tries to verify that the code is
free of the usual range of safety violations (division by zero, null dereferencing,
array out of bounds), based on Hoare logic. If the automated prover fails, the
user can start an interactive proof process using Caml as scripting language.
The developers’ stated aim is to increase the scope for interactivity and control
of the proof process. Users are also able to manually insert code annotations
as required. For debugging purposes, Caveat lets users interpret failed proof
obligations and relate them to their origin. It can also generate counter-
examples.

Perfect Developer and Caveat are closest to our tool in terms of their ap-
proach to verification, but there are a number of key differences. Both systems
require the users to supply annotations, and use fixed provers, while we au-
tomatically generate the annotations and allow the choice of many different
provers, or even an external prover resource. Caveat, in particular, allows
some quite sophisticated interactions with the proof process, while we have
consciously adopted a more course-grained approach.

There are very few other approaches to providing explicit traceability for
a program synthesis system. Van Baalen and others [32] use origin tracking
[33] to indicate how statements in synthesized code relate to the initial prob-
lem specification and domain theory. They later built on this to present a
documentation generator and XML-based browser interface that generates an
explanation for every executable statement in the synthesized program [37].

The Proof General [2] generic prover interface aims to shield users from
the low-level details of using a theorem prover. It offers a customizable user
interface, while adding functionality on top of that provided by the underlying
prover. Our aims are similar, although we target a different abstraction level.
There are also several developing higher-order proof networks (e.g., Mathweb
[15]), but it is not yet clear what role they should play in a certification
assistant. The SystemOnTPTP proof service [26], which we use, can be seen
as a first-order automated equivalent of these.

6 Future Work

We are currently extending the markup the VCG adds to the proof to allow
a more precise and meaningful tracing. The VCG will then augment the VCs

14



with semantic information concerning the interpretation of the different parts
of the formula (e.g., “loop invariant asserted in line X”). This simplifies the
interpretation of the VCs for debugging purposes and can also be used to
generate high-level descriptions of the VCs. However, since this extension
changes the structure of the location information, we now need to extend the
interface to make use of this information.

We are also extending the interface to include specifications and design
documents, thus combining our work on certification with automated safety
and design document generation [9]. Eventually, we aim to provide full and
seamless traceability between specification, design documentation, code, and
certificates. However, the tool does not yet provide the level of integration
which we would like. In particular, since the synthesis system, which generates
the annotations, is not yet integrated into the interface, users can not yet use
the interface to choose the safety policy.

Another line of future work is to replace some of the smaller trusted compo-
nents by correct-by-construction implementations. Promising candidates are
the domain theory, including the dynamically generated axioms, which could
be replaced with a conservatively developed domain theory, and the rewrite
engine, which takes the proof tasks through a sequence of normal forms. This
combination of control and logic could be provided by tactics. In the long
run, we might also look at generating tactics (instead of annotations) along
with the program, especially as we move towards certifying more complicated
policies.

Our broader aim is to develop a certificate management system along the
lines of the Programatica project [31]. This will enable a wide range of ad-
ditional capabilities, such as support for manual sign-offs on code fragments
that violate stated safety policies.

Acknowledgments. Amber Telfer implemented a first version of the VC linking

and browsing. Phil Oh helped extend this into the current version of the certification

assistant.

References

[1] Ahrendt, W., T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager and P. H. Schmitt, The KeY tool, Technical
Report TR 2003-05, Göteborg University (2003).

[2] Aspinall, D., Proof general: A generic tool for proof development, in: S. Graf
and M. I. Schwartzbach, editors, Proc. 6th Intl. Workshop TACAS, LNCS 1785

(2000), pp. 38–42.

[3] Ayari, A. and D. Basin, A higher-order interpretation of deductive tableau, JSC
31 (2001), pp. 487–520.

15



[4] Baudin, P., G. Canet, A. Pacalet and D. Schoen, Caveat: a tool for analysis
and formal proof of C programs, in: Tool Exhibition Notes, FM 2003: 12th
International FME Symposium, Pisa, Italy, 2003, pp. 6–10.

[5] Crocker, D., Perfect developer: a tool for object-oriented formal specification
and refinement, in: Tool Exhibition Notes, FM 2003: 12th International FME
Symposium, Pisa, Italy, 2003, pp. 37–41.

[6] Denney, E. and B. Fischer, Correctness of source-level safety policies, in:
K. Araki, S. Gnesi and D. Mandrioli, editors, Proc. FM 2003: Formal Methods,
LNCS 2805 (2003), pp. 894–913.

[7] Denney, E., B. Fischer and J. Schumann, An empirical evaluation of automated
theorem provers in software certification, in: Proc. IJCAR 2004 Workshop on
Empirically Successful First Order Reasoning (ESFOR), 2004.

[8] Denney, E., B. Fischer and J. Schumann, An empirical evaluation of automated
theorem provers in software certification, International Journal of AI Tools
(2005), to appear.

[9] Denney, E. and R. P. Venkatesan, A generic software safety document generator,
in: C. Rattray, S. Maharaj and C. Shankland, editors, Proc. 10th Intl. Conf.
on Algebraic Methodology and Software Technology, LNCS 3097 (2004), pp.
102–116.

[10] Detlefs, D. L., G. Nelson and J. B. Saxe, Simplify: A theorem prover for program
checking, Technical Report HPL-2003-148, HP Labs (2003).

[11] Feather, M. S. and M. Goedicke, editors, “Proc. 16th ASE,” IEEE Comp. Soc.
Press, San Diego, CA, 2001.

[12] Fischer, B. and J. Schumann, AutoBayes: A system for generating data
analysis programs from statistical models, J. Functional Programming 13

(2003), pp. 483–508.

[13] Flanagan, C., K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe and R. Stata,
Extended static checking for Java, in: L. J. Hendren, editor, Proc. PLDI 2002
(2002), pp. 234–245, published as SIGPLAN Notices 37(5).

[14] Fraer, R., Tracing the origins of verification conditions, in: M. Wirsing and
M. Nivat, editors, Proc. 5th Intl. Conf. on Algebraic Methodology and Software
Technology, LNCS 1101 (1996), pp. 241–255.

[15] Franke, A., S. M. Hess, C. G. Jung, M. Kohlhase and V. Sorge, Agent-oriented
integration of distributed mathematical services, Journal of Universal Computer
Science 5 (1999), pp. 156–187.

[16] Letz, R. and G. Stenz, DCTP: A Disconnection Calculus Theorem Prover,
in: R. Gore, A. Leitsch and T. Nipkow, editors, Proc. First Intl. Joint Conf.
Automated Reasoning, LNAI 2083 (2001), pp. 381–385.

16



[17] McCune, W. and O. Shumsky, System description: Ivy, in: D. McAllester, editor,
Proc. 17th CADE, LNAI 1831 (2000), pp. 401–405.

[18] McCune, W. and L. Wos, Otter—the CADE-13 competition incarnations, JAR
18 (1997), pp. 211–220.

[19] Moser, M., O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann and K. Mayr,
The model elimination provers SETHEO and E-SETHEO, JAR 18 (1997),
pp. 237–246.

[20] Necula, G. C. and P. Lee, The design and implementation of a certifying
compiler, in: K. D. Cooper, editor, Proc. PLDI 1998 (1998), pp. 333–344,
published as SIGPLAN Notices 33(5).

[21] Nelson, S. and J. Schumann, What makes a code review trustworthy?, in: Proc.
Thirty-Seventh Annual Hawaii International Conference on System Sciences
(HICSS-37) (2004).

[22] Riazanov, A. and A. Voronkov, The design and implementation of Vampire, AI
Communications 15 (2002), pp. 91–110.

[23] RTCA Special Committee 167, Software considerations in airborne systems and
equipment certification, Technical report, RTCA, Inc. (1992).

[24] Schulz, S., E – A Brainiac Theorem Prover, Journal of AI Communications 15

(2002), pp. 111–126.

[25] Sutcliffe, G., The CADE-J2 ATP System Competition (2004),
www.tptp.org/CASC/J2/.

[26] Sutcliffe, G., System on TPTP (2005),
www.tptp.org/cgi-bin/SystemOnTPTPFormMaker.

[27] Sutcliffe, G. and D. Belfiore, Semantic Derivation Verification, in: I. Russell
and Z. Markov, editors, Proceedings of the 18th Florida Artificial Intelligence
Research Symposium (2005), to appear.

[28] Sutcliffe, G. and C. Suttner, TPTP home page (2003), www.tptp.org.

[29] Sutcliffe, G., J. Zimmer and S. Schulz, TSTP Data-Exchange Formats for
Automated Theorem Proving Tools, in: W. Zhang and V. Sorge, editors,
Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems,
number 112 in Frontiers in Artificial Intelligence and Applications, IOS Press,
2004 pp. 201–215.

[30] Tammet, T., Gandalf, JAR 18 (1997), pp. 199–204.

[31] The Programatica Team, Programatica Tools for Certifiable, Auditable
Development of High-assurance Systems in Haskell, in: Proc. High Confidence
Software and Systems Conference, Baltimore, MD, 2003. Available at
www.cse.ogi.edu/PacSoft/projects/programatica.

17

www.tptp.org/CASC/J2/
www.tptp.org/cgi-bin/SystemOnTPTPFormMaker
www.tptp.org
www.cse.ogi.edu/PacSoft/projects/programatica


[32] Van Baalen, J., P. Robinson, M. Lowry and T. Pressburger, Explaining
synthesized software, in: Feather and Goedicke [11], pp. 240–248.

[33] van Deursen, A., P. Klint and F. Tip, Origin tracking, JSC 15 (1993), pp. 523–
545.

[34] Weidenbach, C., Spass home page (2003), http://spass.mpi-sb.mpg.de.

[35] Whalen, M., J. Schumann and B. Fischer, Synthesizing certified code, in: L.-H.
Eriksson and P. A. Lindsay, editors, Proc. FME 2002: Formal Methods—Getting
IT Right, LNCS 2391 (2002), pp. 431–450.

[36] Whittle, J. and J. Schumann, Automating the implementation of Kalman filter
algorithms, ACM Transactions on Mathematical Software 30 (2004), pp. 434–
453.

[37] Whittle, J., J. Van Baalen, J. Schumann, P. Robinson, T. Pressburger, J. Penix,
P. Oh, M. Lowry and G. Brat, Amphion/NAV: Deductive synthesis of state
estimation software, in: Feather and Goedicke [11], pp. 395–399.

18

http://spass.mpi-sb.mpg.de

	Introduction
	Background and System Architecture
	Program Synthesis
	Certification
	Theorem Proving
	Document Generation

	The Certification Assistant
	Prover Control
	Certificate Inspection and Visualization
	VC Linker and Browser

	User Model
	Related work
	Future Work
	References

